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Abstract

Since first proposed by Aki (1967), the concept of earthquake self-similarity has been the sub-
ject of intense debate. While observations suggesting a break in self-similarity have been
reported (Harrington and Brodsky, 2009; Bouchon et al., 2011; Lin et al., 2016; Imanishi
and Uchide, 2017), it is well known that artifacts can arise due to attenuation of high-
frequencies (Abercrombie, 1995; Ide et al., 2003). The constant improvement of seismic catalogs
will offer the chance to observe microseismicity, possibly down to the nucleation dimension, and
an improved theoretical understanding of the source characteristics near nucleation is required
to interpret these datasets.

To this end, we use dynamic simulations and ideas from fracture mechanics to derive a source
model for earthquakes with sizes near the nucleation dimension. Self-similar models, such as
those proposed by Madariaga (1976) and Sato and Hirasawa (1973), assume that ruptures
start as a point and propagate at constant velocity. In contrast, frictional theory predicts the
existence of a finite nucleation length (Ruina, 1983; Rubin and Ampuero, 2005): slip velocities
increase over the nucleation area, and rupture velocity increases from zero to its limiting value.
We run dynamic simulations of earthquake cycles on circular asperities loaded by creep, with
dimensions between 1 and 2 critical nucleation lengths. In this size range, creep penetrates
inwards and reaches the center of the asperity, where ruptures begin. We identify two types of
ruptures: first a brief acceleration, barely seismic, with slip velocities decaying as it expands;
then a larger rupture, releasing most of the seismic moment and expanding as a constant stress
drop crack. Surprisingly, we find that far-field ground motion pulses show nearly constant
duration, independent of the asperity radius; this is confirmed by constant corner frequencies
derived from synthesized source spectra.

To explain this behavior, we derive an equation of motion for accelerating circular ruptures
based on an energy balance: the dynamic energy release rate, which is a function of crack size
and rupture velocity, must equal the fracture energy (in our case, a constant). In the early
phases of nucleation, we find that rupture velocity increases exponentially with time, and since
the crack area grows slowly, the same time dependence is reflected in synthetic far-field ground
motion. Due to the exponential growth, theoretical far-field pulses for events of different size
collapse on the same curve once normalized, giving rise to the apparent constant duration found
in the numerical simulations. These results imply: 1) that source duration is not a reliable proxy
for rupture dimension near the nucleation length, and 2) that the break in self-similarity would



manifest as an apparent decrease in stress drop for smaller earthquakes since their relative size
is overestimated.

1 Methods

We run fully dynamic simulations using the boundary integral code BICyclE (Lapusta et al.,
2000; Lapusta and Liu, 2009). The following equation of motion governs fault slip:

Tel(x) — 74(x) = QIéSv(X), (1)

where p is the shear modulus, 7¢ the frictional resistance, 7.; the shear stress due to remote
loading and elastodynamic stress interactions between elements, and the term on the right
hand side represents radiation damping (Rice, 1993). Frictional resistance evolves according to
rate-state friction (Marone, 1998):
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where, a, b and are constitutive parameters; d. is the state evolution distance; o is effective the
normal stress; vg is a reference slip velocity; fo is the steady-state friction coefficient at v = v*,
and 6 is a state-variable. We employ the ageing law (Ruina, 1983) for state evolution:
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We impose velocity weakening frictional parameters (a — b = —0.05, b = 0.02) within a

circular asperity, and velocity strengthening parameters (a — b = 0.05) outside of it. The fault
is loaded by a velocity boundary condition. Nucleation under ageing law with the parameters
employed here is expected to take the form of an expanding crack with the nucleation dimension
given by: /
L . @)
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where 4/ is the shear modulus for antiplane shear and the shear modulus divided by 1 — v (v
= Poisson’s ratio) for plane strain deformation. This is analogous to the nucleation dimension
obtained by (Rubin and Ampuero, 2005) for 2D cracks.

Roo =

To derive far-field pulses and spectra from fault slip we use the following results (Aki and
Richards, 1980):

u(x,t) = a/ﬂ ) v(t —d(r,¢)/c) r de dr (5)

where v is the slip velocity, ¢ the wave velocity, d(r, ¢) the distance between the receiver and
a point on the source, and A a constant including the radiation pattern for P- and S-waves,
and geometrical spreading. In what follows, we restrict our attention to an observer at 6§ = 0,
where 6 is the angle from the axis of the asperity; other orientations will be the considered in
future work.

2 Results

Two types of seismic ruptures

Fig. 1 shows an example of a cycle for R = 1.2R,. As previously noted by Chen and Lapusta
(2009), as the creep front coalesces towards the center of the asperity it accelerates, reaching
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Figure 1: Example of simulations showing an earlier rupture with slip velocities decaying as it
expands (middle row) followed by a larger crack-like rupture.

seismic slip velocities over a small area (several times smaller than R.,). This rupture dies out
as it expands. The two smallest asperities (R < 1.05R.) only produce this type of rupture;
in contrast, larger asperities produce a second rupture style with the characteristics of the ex-
panding crack identified by Rubin and Ampuero (2005). The time between the two ruptures
is of the order of minutes: much smaller than the cycle duration but much greater than each
individual rupture (Fig. 3). The second rupture has a longer duration and it releases about
100 times more seismic moment than the first one (Fig. 2). Its spectrum appears similar to a
Brune spectrum (although some small deviations exist, as discussed in the following section):
flat at low frequency and decaying as 1/f? at high frequencies. In contrast, we find that smaller
events have a decaying power spectrum even at low frequencies (Fig. 2).

In the remaining part of the report we focus on the second rupture, since it releases most
of the moment and is more likely to be observed in nature.

Source spectra

We calculated far-field ground motion and source spectra as describe in section 1. First, we fit
a Brune model to the spectrum, estimating both n and f.; however, we note that the spectrum
presents a slight decay at low frequencies, and the corner frequency tends to be underestimated
by assuming a Brune spectrum. Therefore we assume a spectrum of the form:

fm

A= T

(6)
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Figure 2: Far field ground motion (left) and source spectra (right) for 4 consecutive ruptures,
normalized by the amplitude of the last rupture.

and fit n, m and f..

Fig. 4 shows normalized far-field ground motion and source spectra for sources with a
radius between R = 1.1R,, and R = 2R.,. As expected, the rupture on the largest asperity
(R = 2R) has a longer duration than the others; surprisingly, all other events appear to
have approximately the same duration. The constant duration can also be seen in the spectra
and estimated corner frequencies, which do not scale with moment as expected from a self-
similar model (f. ~ M, 1 3) but are instead nearly constant, except for the largest asperity.
The increase in rupture duration and decrease in corner frequency for the largest asperity
is due to the transition between central ruptures and lateral ruptures, expected to occur at
R ~ 2R, (Cattania and Segall, 2019). As expected, the corner frequency decreases by about a
factor of two, since the rupture has to propagate a distance 2R for ruptures nucleating at the
edge compared to those that start at the asperity center.

A source model for accelerating ruptures

The classical scaling between rupture dimension and duration follows from the assumption
of constant rupture velocity; this assumption breaks down during nucleation, as the rupture
front accelerates. To understand earthquake duration vs. source dimension in this regime we
need an equation of motion for the rupture front, which we derive from fracture mechanics.
Following Freund (1990), we treat the rupture as a crack, where the motion of the crack tip
is controlled by balance between the mechanical energy provided by slip behind the crack tip,
and the fracture energy:

G(r,r) =T, (7)

where I' is the fracture energy and G the dynamic energy release rate, which is a function of
the rupture dimension and rupture velocity. The latter is related to the stress intensity factor
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Figure 3: Maximum slip speed vs. time on the asperity with R = 1.2R,, showing aseismic
ruptures (e.g. at time ¢t ~ —107s) followed by two ruptures within a short time (¢ ~ 0).
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where A, is a universal function of crack speed (different for each mode of deformation); K (r,7)
is the dynamic stress intensity factor, which can be written as

G = A(r)

K('I’, 7’) - k(T)K(T‘, 0)7 (9)

where K (r,0) is the static stress intensity factor and k(7) a universal function of rupture velocity.
For simplicity of notation, we write the static stress intensity factor as K(r). The equation of
motion of the crack tip is then given by

oul  \ /2
0= (amee) (10

The product A(7)k?(7*) can be approximated as 1 — /v, where c is the shear wave velocity
for mode III cracks and the Rayleigh wave velocity for mode II cracks. For simplicity, in what
follows we neglect the difference between mode IT and mode III, and assume that the crack is
circular; the same results, within a factor of order one, are expected to apply for the elliptical
crack in the case of mixed-mode propagation.

We assume the initial crack radius satisfies eq. 10 for 7 = 0 (this is analogous to how Rubin
and Ampuero (2005) derived Ry). Eq. 10 can then be written as

K(To) )
V1-=r7/c

The stress intensity factor for a circular crack of radius r is K(r) oc AT4/7; assuming a constant
stress drop and plugging this into eq. (11) yields the following expression for crack tip velocity
as a function of radius:

K(r) = (11)

Vi (r) :fzc(l— 7;0). (12)

r

Note that since V.(rg) = 0, solving for crack position as a function of time with initial condition
r(0) = 1o gives r(t) = ro at all times. Instead, we assume that the crack exceeds the nucleation
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Figure 4: Normalized far-field displacements (left) and spectra (right) for events on ruptures
with asperities between 1.1 — 2R,. All asperities except the largest one (in yellow) experience
central ruptures, with constant duration and corner frequency.

dimension by a small amount: r/ro = 1+ ¢, with € < 1. The crack radius then grows as

r/ro = 14+ W (gexp(t/to)) (13)
ife = 1—[1L+W (gexp(t/to))] " (14)

where W (-) is the Lambert omega function, to = ro/c is a characteristic timescale, and g =
W~1(e) =~ €. Fig. 5 shows that this expression is a reasonably good fit to the crack growth in
the simulations for the mode IIT direction; the mode II direction is less well explained, since
the initial radius in the simulations in smaller than the value predicted by eq. (4) and rupture
velocities for a given radius are therefore underestimated.

Far-field pulses and source spectra for accelerating cracks

We are now in a position to model the far-field ground motion and source spectra for an accel-
erating crack. We start from the model proposed by Sato and Hirasawa (1973), which consists
of a constant stress drop circular crack propagating with rupture velocity v,.p; however, here
we relax the assumption of constant rupture velocity, and instead use the equation of mo-
tion derived in the previous section. Note that both the original and our modified version of
the Sato and Hirasawa (1973) model do not include rupture arrest, and hence produce abrupt
termination in far-field pulses. To address this limitation, in the future we will use the energy
arguments in the previous section to derive an equation of motion for the rupture front as it
enters a velocity strengthening region and eventually arrests.

A constant stress drop crack propagating at speed V,. = 7 has the following velocity profile:

_ 24ArT r(t)
YO T e

where AT is the stress drop and r(t) the crack radius, and p radial distance within the crack(Sato
and Hirasawa, 1973). We use the expressions derived above for r(t), V,.(r) and calculate the

Vi (t), (15)
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Figure 5: Top: rupture front velocity as function of crack radius: simulated events (colored
lines) and theoretical expression (black). Middle, Bottom: Front position and velocity vs.
time. Front position is identified by the peak in shear stress.

far-field motion from eq. 5. Fig. 7 shows the resulting normalized far-field spectra for the Sato
and Hirasawa model with constant rupture velocity and our accelerating rupture model. As
expected, the classic model assuming constant rupture velocity produces pulses of increasing
duration, and thus decreasing corner frequency, with increasing R. In contrast, the accelerating
model produces longer pulses due to the slower average rupture velocity. We also see that the
duration of normalized pulses increases very slowly with radius.

Far-field spectra are proportional to the integrated slip speed (eq. 5), given by (15). For
the observation angle § = 0 and in the far field, the time delay in eq. (5) is a constant, and the
observed displacement is simply proportional to the integrated slip velocity. It can easily be
shown that the integral is proportional to the product of crack area and rupture velocity:

u ~ ar(t)?V,(t). (16)
where we omitted the time delay d/c in eq. (5) for notational convenience. For constant rupture
velocity, far field displacements simply grow as rupture area or t2. Once far-field motion is
normalized by the final (maximum) displacement u s and aligned at the end time of the rupture
(as in Fig. 6) we get

;- ()

u7f =
shown by the dotted lines in Fig. 6. If we define rupture duration as the time during which the
normalized slip speed exceeds a certain value, it follows that At ~ R/V,., as expected.

(17)

For the accelerating crack, both r and V,. are time-dependent; early on, V,. =~ 0 and we can
assume that the radius is approximately constant, so that the duration of far-field displacement
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Figure 6: Semi-analytical far-field displacements, observed at § = 0 (e.g. along the asperity
axis). Left: original Sato and Hirasawa (1973) model with constant rupture velocity. Right:
modified model accounting for accelerating rupture. Colors correspond to the same R/R., as
Fig. 4. Black dotted lines are theoretical expressions derived assuming constant rupture velocity
and =~ constant radius respectively. Note the different scales on the x-axis.

is proportional to the rupture velocity, given by eq. 14. In the early stages of nucleation, when
gexp(t/ty) < 1, the Lambert W-function can be approximated as W (z) ~ z for z < 1 and we
get

7/c = gexp (t/ty). (18)

The ratio between far-field displacements observed at a time At before the end of the rupture

is then simply

u
—_ == —A 1
. “,mc exp(~At/to), (19)

and it does not depend on the final radius but only on the time interval, so that all normalized
curves collapse on the same line. This expression, shown by the dotted lines in Fig. 6, is in
excellent agreement with the model and it explains the constant rupture duration observed for
events near the nucleation dimension.

Finally, we compare the corner frequencies from the original and modified Sato and Hirasawa
(1973) model to the simulations (Fig. 7). While the original model predicts f. ~ 1/R, our
modified model reproduces the nearly constant corner frequency in the simulations.

3 Conclusion

We used fully dynamic rupture simulations and analytical results from fracture mechanics to
derive a source model for small earthquakes, which accounts for acceleration in slip and rupture
velocity as well as the finite size of the nucleation region. In the early phases of nucleation,
analytical model predicts that far field displacements grows exponentially with time, producing
a constant source duration and corner frequency.
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Figure 7: Corner frequencies vs. source dimension for simulated events (note that the two
smallest asperities only experience small decaying ruptures, and not the crack-like ruptures
we discuss here; and the largest asperity ruptures laterally). The classic Sato and Hirasawa
(1973) model predicts f. ~ 1/R, while the modified model accounting for acceleration produces
constant f. as observed in the simulations.

In terms of seismological observations, we therefore expect that the break in self-similarity
would result in constant source duration for events approaching the nucleation dimension. The
source radius estimated from classical methods would be overestimated, leading to an apparent
low stress drops for small magnitude events.
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